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Abstract

We investigate existence of non-negative global solutions to the semilinear

equation ∂u
∂t = ∆αu + a(x)

∑∞
k=2 pku

k + (p0 + p1u)φ(x), u(x, 0) = f(x), x ∈

Rd, where α ∈ (0, 2], φ, a > 0, φ ∈ Cα(Rd), a and φ grow no faster than

polynomially, p > 1, p0 > 0 and f ≥ 0.

1 Introduction and main results

In this paper we investigate existence of non-negative global solutions to semilinear

equations of the type

∂u

∂t
= ∆αu+ a(x)

∞∑
k=2

pku
k + (p0 + p1u)φ(x), u(x, 0) = f x ∈ Rd, (1)

where ∆α is the fractional power −(−∆)α/2 of the Laplacian, α ∈ (0, 2], a, φ and f

are certain nice functions, and pk, k = 0, 1, . . . , are non-negative constants such that∑
k pk = 1, with p0 > 0.

The asymptotic properties of equations of the form (1) are related to the large

deviations behavior of super-Brownian motion (in the case α = 2) and of other
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measure-valued processes, see [3] and the references therein. Moreover, the cumulant

generating function of the occupation measures of a large family of superprocesses

are governed by equations of the form (1), see e.g. [2] and [4]. Pinsky [5] and Zhang

[6] studied both existence and non-existence of positive global solutions to the above

equation when the sum in the reaction part consists of a single term a(x)up, where p

is greater than 1, p1 = 0 and p0 is a non-negative function of x.

In the present note we investigate existence of global solutions in a different setup,

with the assumption that p0 does not depend on x. We deal firstly the case in which

the sum in (1) consists of a single term of the form (a(x)up, with p > 1. Our result

is the contents of the following theorem.

Theorem 1 Consider the semilinear initial value problem

∂u

∂t
= ∆αu+ a(x)up + (p0 + p1u)φ(x) u(x, 0) = f (2)

where 0 < a, φ ∈ Cr(Rd), a and φ grow no faster than polynomially, p > 1, p0, p1 > 0

and f ≥ 0. Assume that

1. 0 < a(x) ≤ c1(1 + |x|)m for c1 > 0,

2. 0 < φ(x) ≤ c2(1 + |x|)−q for c2 > 0, q ∈ (α, d],

3. p > 1 + (α +m)+/(q − α).

Then for all sufficiently small p0, p1 > 0 and all sufficiently small f ≥ 0, the mild

solution to Eq. (2) exists globally in time. More specifically, for sufficiently small p0,

p1 > 0 and each ε > 0, there exists a constant c > 0 such that, if

0 ≤ f(x) ≤ c(1 + |x|)−(α+m)+/(p−1)−ε,

then the mild solution to (2) exists for all time.

Our second theorem addresses existence of positive solutions to Equation (1).

Theorem 2 Consider the equation

∂u/∂t = ∆αu+ a(x)
∞∑
k=2

pku
k + (p0 + p1u)φ(x) u(x, 0) = f x ∈ Rd, (3)
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where 0 < a, φ ∈ Cr(Rd), a and φ grow no faster than polynomially, 1 > p0, p1 > 0,∑∞
k=2 pk = 1− p0 − p1 and f ≥ 0. Assume that

1. 0 < a(x) ≤ c1(1 + |x|)m for c1 > 0,

2. 0 < φ(x) ≤ c2(1 + |x|)−q for c2 > 0, q ∈ (α, d],

3. q − α > (α +m)+.

Then for sufficiently small p0, p1 > 0 and sufficiently small f ≥ 0, the solution to the

equation (3) is global. More specifically, for sufficiently small p0, p1 > 0, and each

ε > 0, there exists a constant c > 0 such that if 0 ≤ f(x) ≤ c(1 + |x|)−(α+m)+−ε, then

the solution to (3) is global in time.

2 Proofs

Our method of proof is an adaptation of a technique used in [3]. We use the following

lemma (which is proved in the final section of the present paper).

Lemma 3 There exists a C∗ > 0 and for all δ > 0, a Cδ > 0 such that,

C∗(1 + |x|)α−q ≤
∫
Rd

(1 + |y|)−q

|x− y|d−α
dy ≤ Cδ(1 + |x|)α−q+δ, q ∈ (α, d]. (4)

We define

v(x, t) ≡ v(x) = µ

∫
Rd

(1 + |y|)−q

|x− y|d−α
dy, µ > 0. (5)

2.1 Proof of Theorem 1

Our assumptions imply that

a(x) ≤ c1(1 + |x|)m, φ(x) ≤ c2(1 + |x|)−q

for some positive constants c1, c2 > 0. Noticing [1] that the Green’s function G of

the generator −∆α satisfies, G(x, y) = γα,d/|x − y|d−α for an appropriate constant

γα,d > 0, it follows from the right-hand inequality in (4), and p > 1+(α+m)+/(q−α),

that there exists a δ > 0 such that

∆αv−vt+a(x)vp+(p0+p1v)φ(x) ≤
(
−µ
γα,d

+ c1C
p
δµ

p + (p0+p1Cδµ)c2

)
(1+|x|)−q. (6)
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It is easy to show that

∆αv ≤ −µ/γα,d(1 + |x|)−q and p0φ(x) ≤ p0c2(1 + |x|)−q.

Moreover,

a(x)vp ≤ c1C
p
δµ

p(1 + |x|)p(α−q+δ)+m ≤ c1C
p
∂µ

p(1 + |x|)−q

because

p(α− q + δ) +m = p(α− q) + pδ +m

≤ (1 + (α +m)+/(q − α))(α− q) + pδ +m

≤ (1 + (α +m)+/(q − α) + δ′)(α− q) + pδ +m (7)

for some δ′ ≥ 0. This is possible because p is strictly greater than 1+(α+m)+/(q−α).

We consider two cases.

Case 1: (α+m)+ = 0 and α+m < 0. In this case we choose δ′ = 0 and the right

hand side in the last inequality becomes (α − q) + pδ + m. Now we can choose δ so

small as to make α + pδ +m negative and, so, (α− q) + pδ +m ≤ −q.
Case 2: (α +m)+ ≥ 0 and α +m ≥ 0. The RHS in (7) becomes

α− q − (α +m)+ + δ′(α− q) + pδ +m

= α− q − (α +m) + δ′(α− q) + pδ +m

= −q + δ′(α− q) + pδ.

Now we can choose δ so small that δ′(α− q) + pδ is negative. Then the whole thing

is less than or equal to −q. Thus, Case 2 is also done. In addition,

p1vφ(x) ≤ p1c2C∂µ(1 + |x|)α−q+∂−q ≤ p1c2C∂µ(1 + |x|)−q,

this being so because α− q + ∂ is negative. In this way (6) is justified.

Now, by first choosing µ sufficiently small so that Cp
δµ

p ≤ 1/2 · µ/γα,d, and then

choosing p0, p1 > 0 sufficiently small, the RHS of (6) can be made negative. Using

the maximum principle together with the first inequality in (4), it follows that for all

sufficiently small c, p0, p1 > 0, the solution u(x, t) to (1) with f(x) ≤ c(1 + |x|)α−q

satisfies u(x, t) ≤ v(x), and is thus a global solution.
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Our next goal is to increase the exponent α− q appearing in the bound for f, up

to the exponent −(α +m)+/(p− 1)− ε figuring in the statement of the theorem.

We argue as follows. By assumption p > 1 + (α +m)+/(q − α). This implies

p− 1 > (α +m)+/(q − α),

which in turn yields

α− q < −(α +m)+/(p− 1).

We can now choose q ≡ q0 so that the last inequality becomes an equality. Let

q1ε(q0, q). Then q1 satisfies the above inequality, and from the above results it follows

that, if

φ(x) ≤ c2(1 + |x|)−q1

for some c1 > 0, then for sufficiently small c, p0, p1 > 0, the solution to (1) with

f(x) ≤ c(1 + |x|)α−q1 is global. But then, by the maximum principle, the same holds

true if we decrease φ so that it satisfies the bound in the statement of the theorem,

namely φ(x) ≤ c2(1 + |x|)−q.
Subsuming, we have proved that (1) possesses a global solution provided that

c, p0, p1 > 0 are sufficiently small, and f(x) ≤ c(1 + |x|)α−q1 for all q1 ∈ (q0, q). Since

q1 can be chosen arbitrarily close to q0, it follows that a global solution exists if

f(x) ≤ c(1 + |x|)−(α+m)+/(p−1)−ε

for some ε > 0 and c > 0 sufficiently small. This completes the proof of global

existence.

Notice that, when a(x) ≡ 1, the first condition for global solution disappears and

the exponent in the bound of f we obtainα instead of (α + m)+. Also, it can easily

be seen that when p1 = 0 we can apply just the same proof.
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2.2 Proof of Theorem 2

Our approach here is an adaptation of the technique used in the proof of Theorem 1.

We use again Inequality (4). Let v be given by (5). There exists δ > 0 such that

∆αv − vt + a(x)
∞∑
k=2

pkv
k + (p0 + p1v)φ(x)

≤

(
−µ
γα,d

+ c1

∞∑
k=2

pkC
k
δ µ

k + (p0 + p1v)c2

)
(1 + |x|)−q. (8)

Indeed, as before, ∆αv ≤ −µ/γα,d(1+ |x|)−q and p0φ(x) ≤ p0c2(1+ |x|)−q. Moreover,

a(x)
∞∑
k=2

pkv
k ≤ c1

∞∑
k=2

pkC
k
δ µ

k(1 + |x|)m+k(α−q+δ)

for all δ > 0. Since the inequality

m+ k(α− q + δ) ≤ m+ 2(α− q + δ)

is valid for all k, it suffices to show that m + 2(α − q + δ) ≤ −q. Again two cases

arise: If α + m < 0, then we choose δ > 0 so small that m + α + δ < 0, and thus,

m+ 2(α− q+ δ) ≤ −q. In case of α+m ≥ 0, since q−α > (α+m)+ = α+m, we can

choose δ > 0 so small that m+α+(α−q)+δ is negative. Hence, m+2(α−q+δ) ≤ −q.
In addition, because of α− q + δ < 0,

p1vφ(x) ≤ p1c2Cδµ(1 + |x|)α−q+δ−q ≤ p1c2Cδµ(1 + |x|)−q.

Thus (8) is satisfied. Now, by first choosing µ so small so Cp
δµ

p ≤ 1/2·µ/γα,d and then

choosing p0, p1 > 0 sufficiently small, the RHS of (8) can be made negative. Hence,

using the maximum principle together with the first inequality in (4), it follows that

for sufficiently small c, p0, p1 > 0 the solution u(x, t) to (3) with f(x) ≤ c(1 + |x|)α−q

satisfies u(x, t) ≤ v(x), and is thus a global solution.

In order to increase the exponent α − q appearing in the bound for f to the

exponent −(α + m)+ − ε appearing in the statement of the theorem, we argue as

follows.

By assumption q − α > (α + m)+ and so α − q < (α + m)+. Let q0 be such

that the above inequality becomes an equality if we replace q by q0. Let q1 ∈ (q0, q).
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Then q1 satisfies the above inequality. So, by the above results, it follows that if

φ(x) ≤ c2(1 + |x|)−q1 for some c1 > 0, then for sufficiently small p0, p1 > 0 and

sufficiently small c > 0, the solution to (3) with f(x) ≤ c(1 + |x|)α−q1 is global.

But then, by the maximum principle, the same conclusion holds true if we decrease

φ so that it satisfies the original bound, that is, φ(x) ≤ c2(1 + |x|)−q. In this way

we have proved that (3) possesses a global solution provided that p0, p1 > 0 and

c > 0 are sufficiently small, and f(x) ≤ c(1 + |x|)α−q1 for all q1 ∈ (q0, q). Since q1

can be chosen arbitrarily close to q0, it follows that the solution to (3) is global if

f(x) ≤ c(1 + |x|)−(α+m)+−ε for some ε > 0 and c > 0 small.

When a(x) ≡ 1, the first condition for existence of global solution disappears, and

in the bound of f, we get α instead of (α + m)+. Finally, it is easy to see that the

same argument also works when p1 = 0.

3 Remaining proofs

In this section we prove the following statement:

There exists a c1 > 0 and, for all δ > 0, a Cδ > 0 such that

c1(1 + |x|)α−q ≤
∫
Rd

(1 + |y|)−q/|x− y|d−αdy ≤ Cδ(1 + |x|)α−q+δ, q ∈ (α, d].

In order to prove the second inequality we need the following lemma.

Lemma 4 The integral ∫
Rd

(1 + |x|)q−α−∂

|x− y|d−α(1 + |y|)q
dy (9)

is a bounded function of x for any δ ∈ (0, q − α).

Proof. Let x ∈ Rd be fixed. We split (9) into three integrals over the Borel sets

D1 = {y ∈ Rd : |x− y| < |x|/2}

D2 = {y ∈ Rd : |x− y| > |x|/2, |x− y| < |y|/2}

D3 = {y ∈ Rd : |x− y| > |x|/2, |x− y| > |y|/2}

and proceed in two steps as follows.
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Step 1: For the integral over D1 we have,∫
D1

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤ Const.(1 + |x|)−α−δ

∫
D1

|x− y|d−α dy. (10)

This is so because |x−y| < |x|/2 and |x|−|y| < |x|/2 imply |y| > |x|/2, and therefore

(1 + |x|)q/(1 + |y|)q ≤ (1 + |x|)q/(1 +
|x|
2

)q ≤ Const.

At this stage we pass to polar co-ordinates

(y1 − x1, y2 − x2, . . . , yd − xd) −→ (r cos θ1, r sin θ1 cos θ2, . . . , r sin θ1 sin θ2... sin θd),

the Jacobian of the transformation being equal to rd−1 sind−2 θ1 · · · sin θd−2. After the

change of variables the RHS of (10) becomes

Const.(1 + |x|)−α−δ
∫ |x|/2

0

∫
θ1

· · ·
∫
θd−1

r sind−2 θ1 · · · sin θd−2 dθd−2 · · · dθ1 dr

≤ Const.(1 + |x|)−α−δ ·
∫ |x|/2

0

rdr

≤ Const.(1 + |x|)−α−δ · |x|2

≤ Const.,

which shows that the integral over D1 is bounded in x.

Step 2: In order to bound from above the integral over D2, we first assume that

|x| < 1. In this case (1 + |x|)q−α−δ ≤ Const., and

∫
D2

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤ Const.

∫
D2

dy

|x− y|d−α(1 + |y|)q

≤ Const.

∫
D2

dy

|x− y|d−α

≤ Const.

∫
{y : |x|/2<|x−y|<|x|}

dy

|x− y|d−α

because |x− y| < |y|/2 and |y| − |x| < |y|/2, and therefore |x| > |y|/2, which implies

|x − y| < |y|/2 < |x| and thus |x|/2 < |x − y| < |x|. Passing to polar coordinates
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renders∫
D2

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤ Const.

∫ |x|
|x|/2

∫
θ1

...

∫
θd

r sind−2 θ1... sin θd−2dθd−2...dθ1dr

≤ Const.

∫ |x|
|x|/2

r dr

≤ Const.

Hence, the integral over D2 is bounded in x if |x| ≤ 1.

Assume now that |x| ≥ 1. Then we have

∫
D2

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤ Const.

∫
D2

(1 + |x|)−α−δ

|x− y|d−α
dy. (11)

This is so because |x − y| < |y|/2 together with the triangle inequality imply |y| >
2/3|x|, hence (1 + |x|)q/(1 + |y|)q) ≤ Const. Notice also that |x− y| < |x|/2 implies

|x− y|+ 1/2 < 1/2 + |x|/2 = (1 + |x|)/2,

which in turn gives 1/(1 + |x|) < Const.(1/|x − y|). We can now bound from above

the RHS of (11) by

Const.

∫
D2

1/|x− y|d−α+α+δdy = Const.

∫
D2

1/|x− y|d+δ dy.

Using polar coordinates as before, we see that the LHS of (11) is bounded from above

by

Const.

∫
{y: |x|/2<|x−y|<|x|}

rdr =
1

δ|x|δ
.

This shows that the integral over D2 is bounded in x also in the case |x| ≥ 1. We

conclude that the integral over D2 is bounded in x.

In order to bound the last integral we split D3 into two parts D31 and D32, where

D31 = {y : |x− y| > |x|/2, |x− y| > |y|/2, |x− y| ≤ 1},

D32 = {y : |x− y| > |x|/2, |x− y| > |y|/2, |x− y| > 1}.
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We have |x| ≤ 2 on D31 as |x − y| > |x|/2 and |x − y| ≤ 1 imply |x|/2 ≤ 1.

Therefore,

∫
D31

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤ Const.

∫
D31

dy

|x− y|d−α(1 + |y|)q

≤ Const.

∫
D31

|x− y|α−d dy

≤ Const.

∫
{y: |x|/2≤|x−y|≤1}

|x− y|α−d dy

≤ Const.

∫ 1

|x|/2
r dr

≤ Const.,

where we passed to polar coordinates after the third inequality, and used that 0 ≤
|x| ≤ 2 to obtain the last inequality.

For the integral over D32 we have

∫
D32

(1 + |x|)q−α−δ

|x− y|d−α(1 + |y|)q
dy ≤

∫
D32

|x− y|q−α−δ

|x− y|d−α(1 + |y|)q
dy.

This is because |x−y| > |x|/2 and |x−y| > 1 on D32, and so (1+|x|)/2 ≤ Const.|x−y|.
Since |x − y| > |y|/2 and |x − y| > 1 yield both |x − y| > {1 + |y|}/2 and 1 + |y| <
Const.|x− y|, the above inequality becomes

≤ Const.

∫
D32

1/{|x− y|d−q+δ(1 + |y|)q} dy

≤ Const.

∫
D32

1/{(1 + |y|)d−q+δ(1 + |y|)q} dy

≤ Const.

∫
D32

1/(1 + |y|)d+δ dy,
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which, after passing to polar coordinates renders

≤ Const.

∫
Rd

1/(1 + |y|)d+δ dy

≤ Const.

∫ ∞
0

rd−1/(1 + r)d+δ dr

≤ Const.

∫ ∞
0

rd−1/(1 + r)d+δ dr

≤ Const.

∫ ∞
0

1/(1 + r)1+δdr

≤ Const.

∫ ∞
1

1/s1+δds = [−1/δsδ]∞1

= 1/δ.

Thus, the integral over D3 is also bounded in x. Lemma (4) is proved.

3.1 Proof of Lemma 3

The RHS inequality in (4) follows directly from Lemma (4).

We now prove the remaining inequality in (4). Notice that∫
Rd

(1 + |y|)−q/|x− y|d−α dy ≥ Const.(1 + |x|)−q
∫
D1

|x− y|α−d dy. (12)

This is because |x− y| < |x|/2 on D1, which implies |y| < 3|x|/2. Hence,

(1 + |x|)q/(1 + |y|)q ≥ (1 + |x|)q/(1 + 3|x|/2)q ≥ Const.,

yielding (1 + |y|)−q ≥ Const.(1 + |x|)−q. We use once again polar coordinates to show
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that the LHS of (12) equals

Const.(1 + |x|)−q
∫
{y: 0<|x−y|<|x|/2}

|x− y|α−ddy

= Const.(1 + |x|)−q
∫ |x|/2

0

∫
θ1

...

∫
θd−1

rd−1/rd−2 sind−2 θ1... sin θd−2dθd−2...dθ1dr

= Const.(1 + |x|)−q
∫ |x|/2

0

r.f(π, d)dr

= Const.(1 + |x|)−q
∫ |x|/2

0

rdr

= (1 + |x|)−q · |x|2.

Subsuming, we have proved that∫
Rd

(1 + |y|)−q/|x− y|d−αdy ≥ Const.(1 + |x|)−q · |x|2.

From here, the left-hand inequality in (4) follows easily if |x| ≥ 1. In the case |x| < 1

one has to verify that
∫
Rd(1 + |y|)−q/|x − y|d−αdy is bounded away from zero. To

prove this, notice that, as |x| < 1,∫
Rd

(1 + |y|)−q/|x− y|d−αdy ≥
∫
Rd

(1 + |y|)−q/(|x|+ |y|)d−αdy

≥
∫
Rd

(1 + |y|)−q/(1 + |y|)d−αdy

=

∫
Rd

(1/(1 + |y|)d−α+qdy

which is a non-zero constant, and hence is no smaller than C∗(1+ |x|)−q for a suitable

constant C∗ > 0. This proves Lemma 3.
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